🛛 (+1) 858-222-9698 | 🖾 xiangfanbo@gmail.com | 🏾 www.fbxiang.com | 🖸 github.com/fbxiang

Bio___

I received Ph.D. in Computer Science at UC San Diego advised by professor Hao Su. During my Ph.D. career, I developed the embodied AI simulation platform SAPIEN, now widely adopted by research institutes and companies around the world. Prior to joining UCSD, I earned computer science and math dual bachelor's degrees from University of Illinois Urbana-Champaign.

Fanbo Xiang

Education

University of California San Diego	
Ph.D. in Computer Science	2020 - 2024
M.S. Computer Science	2018 - 2020
• advisor: Prof. Hao Su	
University of Illinois Urbana-Champaign B.S. Computer Science, B.S. Mathematics Dual Degree (with Highest Honors)	2014 - 2018
Publications	
ManiSkill2: A Unified Benchmark for Generalizable Manipulation Skills Jiayuan Gu*, Fanbo Xiang*, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, Hao Su	ICLR 2023
ManiSkill: Learning-from-Demonstrations Benchmark for Generalizable Manipulation Skills Tongzhou Mu*, Zhan Ling*, Fanbo Xiang*, Derek Yang*, Xuanlin Li*, Stone Tao, Zhiao Huang, Zhiwei Jia, Hao Su	NeurIPS 2021
Neural Texture Mapping for Volumetric Neural Rendering Fanbo Xiang , Zexiang Xu, Miloš Hašan, Yannick Hold-Geoffroy, Kalyan Sunkavalli, Hao Su	CVPR 2021
SAPIEN: A SimulAted Part-based Interactive ENvironment Fanbo Xiang ,Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel Chang, Leonidas Guibas, Hao Su	CVPR 2020
NeuManifold: Neural Watertight Manifold Reconstruction with Efficient and High-Quality Rendering Support Xinyue Wei, Fanbo Xiang, Sai Bi, Anpei Chen, Kalyan Sunkavalli, Zexiang Xu*, Hao Su*	WACV 2025
General-Purpose Sim2Real Protocol for Learning Contact-Rich Manipulation With Marker-Based Visuotactile Sensors Weihang Chen, Jing Xu, Fanbo Xiang, Xiaodi Yuan, Hao Su, Rui Chen	T-RO 2024
Part-Guided 3D RL for Sim2Real Articulated Object Manipulation Pengwei Xie, Rui Chen, Siang Chen, Yuzhe Qin, Fanbo Xiang , Tianyu Sun, Jing Xu, Guijin Wang, Hao Su	RA-L 2023
Close the optical sensing domain gap by physics-grounded active stereo sensor simulation Xiaoshuai Zhang, Rui Chen, Ang Li, Fanbo Xiang , Yuzhe Qin, Jiayuan Gu, Zhan Ling, Minghua Liu, Peiyu Zeng, Songfang Han, Zhiao Huang, Tongzhou Mu, Jing Xu, Hao Su	T-RO 2023

	ation-free large-scale object-object affordance learning , Fanbo Xiang, Hao Su, Leonidas Guibas	CoRL 2022	
Multi-View Stereo	eralizable Radiance Field Reconstruction From J, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang , Jingyi Yu, Hao Su	ICCV 2021	
and Manipulation	ased Competition and Benchmark for Robotic Grasping the Qin, Fanbo Xiang, Minghao Gou, Songyan Xin, Maximo A Roa, run, Ping Tan	RAL 2021	
Academic Act	ivities		
<u> </u>	SAPIEN ManiSkill Challenge (CVPR 2023, ICLR 2022) Open Cloud Robot Table Organization Challenge (IROS 2020) Building and Working in Environments for Embodied AI (CVPR 2022) SEAI: Simulation Technology for Embodied AI (ICCV 2021) CVPR, ICCV, ECCV, SIGGRAPH, ICLR, NeurIPS, AAAI, CoRL, T-RO		
Working Experience			
Senior Director, Robotics Simulation San Diego Hillbot 2024 - present • Maintain an develop robotics simulation platforms to support the advancement of the next generation embodied AI and robotics applications. Design high-quality visual rendering, high-fidelity physical simulation, and realistic environments. • Lead embodied AI system design for sim-to-real. East of the system design for sim-to-real.			
Robotics Simulation	ı Intern	Remote June - Sept. 2021, 2022	
Research on robotics	s and physical simulation.		
Research Intern Adobe • Research on neural of	apture and differentiable rendering	Remote June - Sept. 2020	
 Research on neural capture and differentiable rendering. GPU Software Performance Intern Apple 		Cupertino, CA June - Sept. 2019	
	machine learning workloads for iOS.		
Teaching Expo	erience		
Teaching Assistant Machine Learning Mee	ts Geometry	<mark>San Diego, CA</mark> Jan Mar. 2021	

Teaching Assistant Computer Vision

San Diego, CA Sept. - Dec. 2019